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Abstract
We consider the model of a strongly correlated system of electrons on a
two-dimensional square lattice described by an extended Falicov–Kimball
Hamiltonian where the stability of some axial and diagonal striped phases
was proved. Introducing a next-nearest-neighbour hopping, small enough
not to destroy the striped structure, we examine rigorously how the presence
of the next-nearest-neighbour hopping anisotropy reduces the π/2-rotation
degeneracy of the diagonal-striped phase. The effect appears to be similar to
that in the case of anisotropy of the nearest-neighbour hopping: diagonal stripes
are oriented in the direction of the weaker next-nearest-neighbour hopping.

PACS numbers: 71.10.Fd, 71.10.−w, 71.27.+a, 67.40.Db

1. Introduction

Experimentally, the presence of the striped structures in materials exhibiting high-temperature
superconductivity is well known [1, 2]. Theoretical investigations of the stability and properties
of striped phases are performed mainly with approximate methods. Usually, the Hubbard-like
or t–J -like models, as the standard models applied to explain the effects in strongly correlated
systems, are considered for this purpose (see for example a review [3]). Unfortunately, due to
the tiny energy differences between the energies of the compared phases, the methods that are
applied to study the stability are not reliable. That is why some simpler models (see [4–7])
are considered in the investigations of striped structures stability and properties.

In the recent paper [8] we addressed the issue of striped-order formation in the systems
of strongly correlated quantum particles described by 2D extended Falicov–Kimball models.
We showed that at half filling and in the strong-coupling regime some axial and diagonal
striped phases are stable. In comparison to the standard spinless Falicov–Kimball model (like
in [9, 10]), the model in [8] was augmented by a direct Ising-like nearest-neighbour (n.n.)
attractive interaction between the immobile particles, in order to allow for segregated phases.
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Figure 1. The phase diagram obtained in [8], containing a diagonal-striped phase Sdd, at µ = 0,
in the plane (ω, ε). In this paper ω is given by W = −2t2 + ωt4, see (3), and ε = 0. The
representative configurations (up to translations) of phase Sdd are shown on the right. For more
details see [8].

Changing the intensity of the Ising-like n.n. interaction, the system is driven from a crystalline
(chessboard) phase to a segregated phase, via quasi-one-dimensional striped phases. This
conclusion was reached for two kinds of hopping particles: fermions and hard-core bosons.

The obtained results enable us to continue the study of the properties of striped phases.
The nature of real materials is often anisotropic. One of the examples is structural distortions
in cuprate materials, which may cause the anisotropy in electron hopping [11]. Therefore,
the theoretical investigations of the influence of hopping anisotropy on striped phases are
physically motivated. The influence of n.n. anisotropy of hopping intensity on axial striped
phases was investigated by means of the Hartree–Fock method in [3, 12]. In [13], at the regime
where stripes are stable, we have proved rigorously that for both systems, of hopping fermions
and hard-core bosons, an arbitrarily small anisotropy of n.n. hopping orients the axial striped
phases in the direction of a weaker hopping. We also noted the tendency of the phase diagrams
for different statistics to become similar, even for a weak anisotropy of n.n. hopping.

The analogous, arising naturally, question is how the anisotropy of the next-nearest-
neighbour (n.n.n.) hopping influences the degeneracy of diagonal-striped phases. To answer
this question, in this paper, we use the same techniques as in [13]. Specifically, we investigate
the influence of n.n.n. hopping on the phase Sdd, whose stability was proved for fermions in
[8] (in figure 1 we reproduce the phase diagram and show representative configurations of the
phase Sdd). According to the state of art, that is possible only in the strong-coupling regime
and at the half filling.

In the next section we present the model and discuss some of its basic properties. In
section 3, we introduce a strong-coupling expansion of the ground-state energy (effective
Hamiltonian). In section 4, we carry out the analysis of phase diagram due to the truncated
effective Hamiltonian. Finally, we make conclusions in the summary.

2. The model and its basic properties

The model we consider here is an extension of the spinless Falicov–Kimball model [10], which
in turn is a simplified version of that introduced in [14]. The system is augmented by a direct
Ising-like interaction between immobile particles. Hopping particles are allowed to hop not
only between n.n. sites (as is considered usually), but also between n.n.n. sites. Moreover, the
n.n.n. hopping intensity depends on direction. The Hamiltonian of the system is of the form:
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H0 = HFK + V, (1)

HFK = −t
∑
〈x,y〉1

(
c+
xcy + c+

ycx

) − t+
∑

〈x,y〉2,+

(
c+
xcy + c+

ycx

) − t−
∑

〈x,y〉2,−

(
c+
xcy + c+

ycx

)

+ U
∑

x

(
c+
xcx − 1

2

)
sx, (2)

V = W

8

∑
〈x,y〉1

sxsy. (3)

The underlying lattice � consists of |�| sites denoted x, y, . . . , and having the shape of a√|�| × √|�| torus. Due to the methods we use in what follows, the results do not depend on
the number of lattice sites |�| and therefore are true in the thermodynamic limit, i.e. |�| → ∞.
The sum

∑
〈x,y〉1

stands for summation over all n.n. pairs, while the sums
∑

〈x,y〉2,+
,
∑

〈x,y〉2,−
for summation over all n.n.n. pairs oriented in the direction with slope +1 (+) or in the direction
with slope −1 (−), respectively.

The subsystem of quantum hopping particles (hereafter called the electrons) is described
in terms of creation and annihilation operators of an electron at site x, c+

x , cx , respectively,
satisfying the canonical anticommutation relations. The total electron number, Ne, is the
eigenvalue of

∑
xc

+
xcx and the corresponding electron density is ρe = Ne/|�|. Although

the electrons do not interact directly with each other, there is an on-site interaction with the
localized particles that brings energy U if a site is occupied by both kinds of particles.

Since the site-occupation-number operators of classical immobile particles (hereafter
called the ions) commute with Hamiltonian (1), the subsystem of ions can be described by a
set of pseudo-spins {sx}x∈� (the ion configurations), with sx = ±1 (1 for the occupied site and
−1 for the empty site). The total number of ions is Ni = ∑

x(sx + 1)/2 and the ion density is
ρi = Ni/|�|. In our model the ions interact directly via a n.n. Ising-like interaction V , which
is isotropic.

The Hamiltonian HFK is the well-known spinless Hamiltonian of the Falicov–Kimball
model. A review of rigorous results and an extensive list of references concerning this model
can be found in [15–17].

We shall study the ground-state phase diagram of this system using the grand-canonical
formalism, i.e. we consider

H(µe, µi) = H0 − µeNe − µiNi, (4)

where µe, µi are the chemical potentials of electrons and ions, respectively. Let ES(µe, µi) be
the ground-state energy of H(µe, µi) for a given configuration S of the ions. Then, the ground-
state energy of H(µe, µi), EG(µe, µi), is defined as EG(µe, µi) = min{ES(µe, µi) : S}. The
minimum is attained at the set G of the ground-state configurations of ions.

Applying unitary transformations to H(µe, µi) we can restrict the range of the energy
parameters. Firstly, using the hole–particle transformation for ions, sx → −sx , one finds that
the case of attraction (U > 0) and that of repulsion (U < 0) are related by this transformation:
if S = {sx}x∈� is a ground-state configuration at (t, t+, t−, µe, µi, U), then −S = {−sx}x∈� is
the ground-state configuration at (t, t+, t−, µe,−µi,−U). Consequently, one can fix the sign
of the coupling constant U without any loss of generality. We choose U > 0. We also express
all the other parameters of the Hamiltonian (4) in the units of U, i.e. formally we set U = 1,
preserving previous notations.

Secondly, applying the hole–particle transformation for electrons, i.e. cx → εxc
+
x (where

εx is equal to +1 on the even sublattice and −1 on the odd one), and the hole–particle
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transformation for ions, one finds that if S is the ground-state configuration at (t, t+, t−, µe, µi),
then −S is the ground-state configuration at (t,−t+,−t−,−µe,−µi). Thus, it is enough to
consider only one sign of n.n.n. hopping. We shall consider the case of positive n.n.n. hopping
intensities: t+, t− > 0.

Thirdly, using another hole–particle transformation for electrons, cx → c+
x , and the

hole–particle transformation for ions, we obtain that if S is the ground-state configuration at
(t, t+, t−, µe, µi), then −S is the ground-state configuration at (−t,−t+,−t−,−µe,−µi).
Applying consecutively the two joint (with respect to electrons and ions) hole–particle
transformations, we obtain that if S is the ground-state configuration at (t, t+, t−, µe, µi),
it is also the ground-state configuration at (−t, t+, t−, µe, µi). So the relative sign of n.n. and
n.n.n. hopping amplitudes does not play any role in the model.

Finally, let us note that Hamiltonian (4), in contrast to that where only n.n. hopping is
present, is not invariant with respect to the joint hole–particle transformation for electrons and
ions for any values of µe and µi .

3. The strong-coupling expansion of the ground-state energy

Using the method of unitary-equivalent interactions [18] in the strong-coupling regime and at
half filling we can expand the ground-state energy ES into a power series in tatb+ t c−. The idea
of the method is the following. Dividing the Hamiltonian into two parts, diagonal and off-
diagonal in some basis, unitary transformations are applied, which diagonalize the Hamiltonian
to a certain order. The main advantage of this method is that the unitary transformations are
applied locally and that is why the method is well defined: the expansion is convergent,
uniformly in �. The result, with the expansion terms up to the fourth order (the fourth-order
effective Hamiltonian), i.e. a + b + c � 4, reads

ES(µe, µi) = E
(4)
S (µe, µi) + R(4),

E
(4)
S (µe, µi) = −

[
1

2
(µi − µe) +

3

4
t2(t+ + t−)

] ∑
x

sx

+

[
1

4
t2 − 9

16
t4 − 1

16
t2

(
3t2

+ + 10t+t− + 3t2
−
)

+
W

8

] ∑
〈x,y〉1

sxsy

+

[
1

4
t2
+ +

3

16
t4 − 3

8
t2

(
2t2

+ + t+t−
) − 3

16
t4
+ − 3

8
t2
+ t2

−

] ∑
〈x,y〉2,+

sxsy

+

[
1

4
t2
− +

3

16
t4 − 3

8
t2

(
2t2

− + t+t−
) − 3

16
t4
− − 3

8
t2
+ t2

−

] ∑
〈x,y〉2,−

sxsy

+

[
1

8
t4 − 1

8
t2t+t− +

3

16
t2
+ t2

−

] ∑
〈x,y〉3

sxsy +
3

16
t2t2

+

∑
〈x,y〉4,+

sxsy

+
3

16
t2t2

−
∑

〈x,y〉4,−

sxsy +
1

8
t4
+

∑
〈x,y〉5,+

sxsy +
1

8
t4
−

∑
〈x,y〉5,−

sxsy +
3

8
t2t+

∑
P +

1

sP +
1

+
3

8
t2t−

∑
P −

1

sP −
1

+
5

16
[t4 + 2t2t+t−]

∑
P2

sP2 +
5

16
t2
+ t2

−
∑
P3

sP3 +
5

16
t2t+t−

∑
P4

sP4

+
5

16
t2t2

+

∑
P +

5

sP +
5

+
5

16
t2t2

−
∑
P −

5

sP −
5
. (5)
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Figure 2. The set of plaquettes (paths) over which the sums are taken in the ground-state energy
expansion (5).

Here, the sign • in the 〈x, y〉i,• means a positive or a negative slope of an ith order n.n. pair.
The sets of plaquettes (or paths) P •

i are shown in figure 2. The sign • in the superscript
of the path P •

i reflects the sign of the slope of the n.n.n. pairs in it. The remainder, R(4), is
independent of the chemical potentials and W , and collects all the terms proportional to tatb+ t c−,
with a + b + c = 5, 6, . . . . The above expansion is absolutely convergent for sufficiently small
t, t+ and t−, uniformly in �. In the special case of t+ = t− = t ′ and W = 0 it was obtained in
[19].

Let us note that the ground-state energy expansion (5) depends only on (µi −µe). Hence,
we denote this difference as the unique chemical potential parameter µ.

In [8], we have obtained the phase diagram of the isotropic model without n.n.n. hopping,
i.e. for t+ = t− = 0. Here, our aim is to determine the influence of the n.n.n.-hopping
anisotropy on the diagonal-striped phase Sdd (see figure 1). The value of the n.n.n.-hopping
intensities, t+, t−, cannot be too large, in order to preserve the phase diagram up to fourth order.
On the other hand, the n.n.n.-hopping intensities cannot be too small, in order to appear in
the fourth-order effective Hamiltonian. In an attempt to satisfy both requirements, we choose
the smallest n.n.n.-hopping intensities t+, t−, i.e. such that they do not appear in the expansion
terms of order smaller than 4: t+ = a+t

2 and t− = a−t2. In this case, the effective Hamiltonian
assumes the form:

E
(4)
S (µ) = −

[
1

2
µ +

3

4
t4(a+ + a−)

]∑
x

sx +

[
1

4
t2 − 9

16
t4 +

W

8

] ∑
〈x,y〉1

sxsy

+

[
1

4
t4a2

+ +
3

16
t4

] ∑
〈x,y〉2,+

sxsy +

[
1

4
t4a2

− +
3

16
t4

] ∑
〈x,y〉2,−

sxsy

+
1

8
t4

∑
〈x,y〉3

sxsy +
3

8
t4a+

∑
P +

1

sP +
1

+
3

8
t4a−

∑
P −

1

sP −
1

+
5

16
t4

∑
P2

sP2 , (6)

i.e. the second requirement is satisfied. To answer the question put in the introduction,
concerning the influence of anisotropy of n.n.n. hopping on the degeneracy of the phase Sdd,
there is no need to consider the whole phase diagram. For t+ = t− = 0, we fix a point, well
inside the domain of the diagonal-striped phase Sdd, say µ = 0 and W = −2t2 + 9/2t4, i.e.
ω = 9/2 (see figure 1). Then, with the fixed point in (µ,W)-plain, we introduce a n.n.n.
hopping which does not change the ground-state configurations. Calculations show that Sdd

has the minimal energy for a = |a+| = |a−|, where −1/4 � a � 1/4 (we suppose that the
difference between a+ and a− is not large, so they are of the same sign). Therefore, with
our choice of n.n.n.-hopping intensities, the first of the above two requirements can also be
satisfied. Eventually, we fix the values of n.n.n.-hopping intensities: a+ = 1/8, a− = γ a+,
with γ varying about 1 (say, 0 � γ � 2).
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Since all the energy parameters, except the parameter γ of n.n.n.-hopping anisotropy,
have been fixed, the effective Hamiltonian (6) depends only on γ . In the following section,
we examine how n.n.n.-hopping anisotropy, γ �= 1, influences the degeneracy of the diagonal-
striped phase Sdd.

4. Diagonal-striped phase versus n.n.n.-hopping anisotropy

We use the m-potential method [20, 22, 23] for constructing the phase diagram of effective
Hamiltonian E

(4)
S (γ ). For technical reasons, it is convenient to deal with such energies

of configurations that are affine functions of the parameters of the effective Hamiltonian.
However, the effective Hamiltonian (6) contains the terms proportional to γ and γ 2. To get rid
of nonlinearities, we replace γ and γ 2 by two independent parameters d1 and d2, respectively,
with d1, d2 varying in the rectangle 0 � d1 � 2 and 0 � d2 � 4, in which the Hamiltonian is
affine. After constructing the phase diagram in the (d1, d2) plane, we restrict it to the d2 = d2

1
curve.

To compare the energies of configurations, we rewrite E
(4)
S (d1, d2) as the sum,

E
(4)
S (d1, d2) = t4

2

∑
T

H
(4)
T , (7)

over (3 × 3)-site blocks (called T-plaquettes). The potential H
(4)
T is of the form:

H
(4)
T = − 3

16
(d1 + 1)s5 +

49

512

∑′′

〈x,y〉2,+

sxsy +
1

32

(
1

16
d2 + 3

) ∑′′

〈x,y〉2,−

sxsy

+
1

12

∑′′

〈x,y〉3

sxsy +
3

128

∑′′

P +
1

sP +
1

+
3

128
d1

∑′′

P −
1

sP −
1

+
5

32

∑′′

P2

sP2 , (8)

where s5 is the central site of a T-plaquette. We are looking for the local configurations on
T-plaquette which minimize the local potential H

(4)
T . Such configurations are ground-state

configurations locally. If it is possible to extend the local ground-state configuration to a
global one, in a way that other local configurations with higher energy do not appear, i.e.
construct the configuration in � using the local ground-state configurations only, then the
global configuration is the ground-state configuration and the potential H

(4)
T is called the

m-potential.
Unfortunately, the potential (8) is not an m-potential in the rectangle of considered values

of d1 and d2. Therefore, following [21–23] we introduce the so-called zero potentials. The
zero potentials, satisfying

∑
T

K
(4)
T = 0, (9)

can be chosen in the form:

KT =
9∑

i=1

αik
(i)
T , (10)

where coefficients αi have to be determined in the process of constructing a phase
diagram and the potentials k

(i)
T , invariant with respect to the spatial symmetries of H0, and
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d2

d1
0

1

2

3 Sdd

-

+

Sdd

γ >1

γ<1

1

Figure 3. The phase diagram of E(4)(d1, d2), with 0 � d1 � 2 and 0 � d2 � 4. The
rectangle breaks down into two regions: above d2 = 1, the configurations S+

dd are the ground-state
configurations, while S+

dd are replaced by S−
dd below d2 = 1. The dashed line represents the

condition d2 = d2
1 . The representative configurations (up to translations) of S+

dd, S−
dd are shown on

the right.

(This figure is in colour only in the electronic version)

fulfilling (9), read

k
(1)
T = s1 + s9 − 2s5, k

(2)
T = s2 + s8 − 2s5,

k
(3)
T = s3 + s7 − 2s5, k

(4)
T = s4 + s6 − 2s5,

k
(5)
T = s1s2 + s8s9 − s4s5 − s5s6, k

(6)
T = s2s3 + s7s8 − s4s5 − s5s6,

k
(7)
T = s1s4 + s6s9 − s2s5 − s5s8, k

(8)
T = s3s6 + s4s7 − s2s5 − s5s8,

k
(9)
T = s2s4 + s6s8 − s3s5 − s5s7.

Here, we label 1, . . . , 9, the sites of a T-plaquette, from left to right, starting in the bottom
left corner and ending in the upper right one. In order to obtain the phase diagram, we
have to compare the energies of all the possible T-plaquette configurations. The zero-potential
coefficients α needed for this are given in table 1 in the appendix. We provide their values only
at certain generating points, since we can assume that the coefficients α are affine functions of
parameters (d1, d2). For more details on using the m-potential method see [13] and references
therein.

The phase diagram of E(4) is shown in figure 3. The rectangle of considered points
(d1, d2) breaks down into two domains. In the lower one, where γ < 1 and t− < t+, it is
the phase S−

dd, with stripes being parallel to the direction of t−-hopping, that is stable. The
analogous situation is in the upper domain, where γ > 1 and t− > t+: the stable phase, S+

dd,
consists of stripes oriented along t+-hopping. At γ = 1, we have the isotropic phase Sdd

whose configurations consist of S+
dd and S−

dd.
So we see that, at least for the truncated effective Hamiltonian, switching on of a n.n.n.-

hopping anisotropy reduces the rotational degeneracy of diagonal-striped phases: they become
oriented in the direction of the weaker hopping.

This result is similar to that described in [13], where the influence of n.n.-hopping
anisotropy on axial-striped phases was investigated. In that case, not only for a truncated
effective Hamiltonian but also for the corresponding quantum one, it was proved that for any
nonzero value of n.n.-hopping anisotropy the rotational degeneracy of axial-striped phases is
reduced by making them oriented along the direction of the weaker n.n. hopping. Now in
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Table 1. Zero-potential coefficients for the phase diagram shown in figure 3.

Points (d1, d2) (0, 0) (2, 0) (0, 1) (2, 1) (0, 4) (2, 4)

α1 − 83
1536 − 259

3072 − 79
1536 − 253

3072 − 67
1536 − 217

3072

α2 − 25
1536 − 245

3072 − 29
1536 − 251

3072 − 41
1536 − 287

3072

α3 − 47
1536 − 331

3072 − 43
1536 − 325

3072 − 31
1536 − 289

3072

α4 − 25
1536 − 245

3072 − 29
1536 − 251

3072 − 41
1536 − 287

3072

α5
53

3072
137
8192

19
1024

139
8192

3
128

91
8192

α6 − 53
3072 − 335

24576 − 19
1024 − 365

24576 − 3
128 − 91

8192

α7
53

3072
401
8192

19
1024

403
8192

3
128

1117
24576

α8 − 53
3072 − 571

24576 − 19
1024 − 589

24576 − 3
128 − 139

6144

α9 − 19
3072

101
2048 − 19

3072
13
256 − 19

3072
1451
24576

turn, the natural question is whether the conclusions we arrived at, concerning n.n.n.-hopping
anisotropy, hold true for the quantum model, described by Hamiltonian (4). Applying the
arguments presented in [22, 23], we can demonstrate (see for instance [24]) that the stable
phases of the obtained above phase diagram remain stable for model (4), but in some smaller
domains. That is, if the remainder R(4) is taken into account, then there exists such a small
t0, that for t < t0 the phase diagram looks the same for the quantum model, except some
narrow regions (of width O(t) in the scale of the fourth-order phase diagram shown in
figure 3), located along the phase-boundary lines. In our case this means that the breaking
of the rotational symmetry occurs for γ = 1 + O(t), when the n.n.n.-hoping intensities are
O(t2). Unfortunately, we cannot claim that any nonzero n.n.n.-hopping anisotropy reduces
the rotational degeneracy of the quantum model, as it was the case for n.n. hopping (see [13]).
Here it seems, at least for small n.n.n.-hopping intensities, that there is a certain critical value
of |γ − 1|, above which the degeneracy of phase Sdd is reduced.

5. Summary

We have considered the model of correlated spinless fermions described by an extended
Falicov–Kimball Hamiltonian. Quantum particles are allowed to hop between nearest-
neighbour and next-nearest-neighbour sites. We have shown that a weak anisotropy of the
next-nearest-neighbour hopping reduces the degeneracy of a diagonal-striped phase; it orients
the stripes in the direction of the weaker next-nearest-neighbour hopping.
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Appendix

Here we present the zero-potential coefficients αi in the generating points of phase diagram
shown in figure 3.
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